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ABSTRACT

An analysis of the nonlinear development of the large-scale

structures or instability waves in compressible round jets

was conducted using the integral energy method. The equa-

tions of motion were decomposed into two sets of equa-
tions; one set governing the mean flow motion and the

other set governing the large-scale structure motion. The
equations in each set were then combined to derive kinetic

energy equations that were integrated in the radial direction

across the jet after the boundary-layer approximations were

applied. Following the application of further assumptions

regarding the radial shape of the mean flow and the large

structures, equations were derived that govern the nonlin-

ear, streamwise development of the large structures. Using

numerically generated mean flows, calculations show the

energy exchanges and the effects of the initial amplitude
on the coherent structure development in the jet.

INTRODUCTION

Strong evidence suggests that jet noise, particularly in

the supersonic regime, is dominated by contributions from
wave-like structures in the initial region in the jet that are
associated with Mach-wave radiation. These structures

cannot be captured by classical turbulence modeling. Di-

rect Numerical Simulations (DNS) and Large Eddy Simu-

lations (LES) can successfully capture these structures, but

they are computationally intensive.

There have been several attempts to model this structure

using the integral energy approach. The basic idea is that

the coherent structure is modeled as nonlinear instability

waves that grow and decay along the jet. Each flow com-

ponent is split into three quantities: a time-average mean
component, a large-scale wave-like coherent component,

and a fine-scale random turbulence component. Starting

from the full compressible Navier-Stokes equations and us-

ing time averaging, the momentum equations for each flow
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component can be obtained. These equations are then used

to derive the kinetic energy equations, which are inte_ated

across the jet to produce a set of simultaneous, ordinary

differential equations describing the interactions among the

various scales of motion. Shape assumptions are then made

to close these equations to obtain the development of each
flow component. The plane shear layer case has been stud-

ied by several researchers, l'-" The incompressible round

jet case has been studied for single and multi-frequency

modes. 3"4 The compressible planar shear layer case has

been studied by Lee & Liu. 5 The focus of this study is

the compressible, supersonic round jet case because of its

obvious relevance to practical applications.

Apart from modeling the physics involved, the study

of the development of the coherent mode was conducted

to simulate excited jets. Excitation via single or multi-

frequency mode has been conducted in the past to control
the jet signature. For instance, Raman et al. 6 show that by

exciting an incompressible round jet via forced waves of

various frequencies, amplitudes, and phases, the jet can be
made to spread faster and thus may reduce its noise signa-

ture. Arbey & Ffowcs-Williams 7 considered the objective

of reducing the peak noise by forcing an excitation wave at

the subharmonic frequency of the peak noise. They showed
that an interaction process could occur that would result

in suppressing the fundamental and thus reducing the peak
noise.

The starting point of this analysis is that we consider

a turbulent round jet at a sufficiently high speed so that

the compressibility is significant. The development of this

jet in the unexcited case is assumed to be given by some

other means (e.g. analytically or via Reynolds averaged

numerical simulations). This jet is then excited by a single-
frequency instability wave. The nonlinear development of

this wave will be presented herein based on the integral

energy approach. Along with the wave development, the

mean flow-spreading rate is also modified and will be pre-

sented herein. Since the focus here is the supersonic jet, we

must consider the helical modes as they are more amplified
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thantheaxisynmletricones.8 Oncethecomputationsare
completed,adescriptionofall thevariablesof thelarge-
structuredisturbancefieldinandnearthejet isgivenfor
aparticularmodenumberandfrequency.It canbeused
astheacousticsourcetocomputethenoiseradiationfield
outsideofthe.jet.Thisisdescribedinaseparatepapery

FORMULATION OF THE PROBLEM

Consider a high-Reynolds number turbulent jet issuing

from a nozzle of diameter D in a still air. The jet is

shock-free, but the Mach number is high enough for com-

pressibility effects to be significant. The jet is excited

by a single-frequency instability wave of Strouhal num-

ber fD/Uj. The density and the component velocities are
normalized by the jet exit density and axial velocity at the

centerline, _/and U:. respectively. The pressure is normal-
--5

ized by -_jU9, time by D/U s, and spatial coordinates by
D. Each flow parameter is split into a time-averaged part
-- I
t :z(.r.r. o), a coherent, wave-like part. u,(.r,/', o. t), and a

fine-scale random turbulence part, u_'(x, v, o. t). Thus, the

velocity can be written :

tt, = L'-ri(x.r.o) + u i''(x, r. o, t) + ui (x,r.o,t)'' (1)

where i = 1.2.3. In the cylindrical coordinates. 1 refers

to the axial direction x with axial velocity u, 2 refers to the
radial direction r with radial velocity v, and 3 refers to the

azimuthal direction o with azinmthal velocity w. An over

bar. ( ), denotes a time-averaged quantity. The pressure
and the density are similarly split:

p=-fi(x,r.o)+p'(x.r.o.t)+p'(x,r.o.t) (2)

p = p(x, ,..o) + p'(z, r, o, t) + j'(z, r, o, t) (3)

In the subsequent analysis, however, the random tur-

bulence component will not be explicitly considered any
further, thus we have

-- tu, = Ui(:r.r. o) +_i(x,r,O,t) (4)
-- !

p = P(x. r. o) + p (x. r. o, t) (5)

p = _(x, r. o) + p'(x, r. O, t) (6)

For the product of the density with the velocities, we get

(pu,) = (_ + p')lF, + _'z) =-_,+ p u'_ + p'F_ + p'u'_

Time-averaging yields

= pu_ (7)

and we define

Neglecting the difference between the product of distur-

bance variables and the averaged value of the product re-
sults in

-- I
fi* _ put + p' Ui. (8)

Equations of motion

The formulation begins with the following nondimen-

sionalized continuity and momentum equations in cylindri-
cal coordinates:

p, + (p_)x + -[,'(m,)J, + (_')o = 0 _9)
?,

(p_),+ (p2+t,)_
1 1 1

(10)

(pv)t + (puv)_,

1 1 pu'"
+- ["(P+S)] +-(PV"%---

1" r p p

= -P+ _, - -- (v + 2Wo)
?" G I'-

(i1)

(pw)t + (puu%
1 1

+ - Y(p_'_')],+ - (p+ p_'_-)o
/" F

l_e F -

(12)

/gtUU

+--
r

where the Reynolds number is Re = "fijUjD/p. The sub-
scripts denote differentiation and the Laplacian is

0 2 1 0 0 1 02

,A = Ox_ + 7 _ r-_r + r-5-Oo--7"

Substituting relations (4) to (8) into (9) to (12), we get:

(-_ -4-Pt)t + (-_ q- _).r
1 1

+ -[r (pv + _)]_ + - (_ + _)o = 0
7" r

(13)

t_ + G + _P+ p' + (t=+ _') (_ + _)]_.
1 1

+- k (_+ ¢) (_ + _)], +- [(_+ _,'1(_+ _)]_
r F

1
= _ee.,X (U + u') (14)

(_ + G + [(v + _') (_ + _)]_.

1 [, (p p,+- + + (r+ _,')(_+ _)]..
F

1 (W+w')(-__+_)+ -_1[(w + w') (_ + _)]o - _

_ 1 (.p+p,) (15)

+G ,a (v+_,') - 7_
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1 1
+ - [" (V + _,')(>-_v+ '_')1 ,. + - (V + _.') (Y*v + _1

/` ?"

+ - [P+ + (IT+ (16)
/` 0

I2{ e F -

These equations will be used to derive a set of equations

governing the mean flow and a set of equations governing

the large-scale structures.

Mean flow

The mean flow equations are obtained by time-averaging
equations (13) to (16) containing the two-component de-

composition. The continuity equation for the mean flow
is

1
-- 1 [r(_)] + (_W)o 0 17)(_)_ + - _ = (

• _. r 7'

and the three momentum equations for the mean flow are:

7" 0

+7 + -7 +

= _+_ /`. (19)

P V

+- + u"_ + +- _It"V +
r' o F

,20,=R_

Large-scale structure

The equations govermng the large-scale structures are

obtained by subtracting the mean flow equations (17) to

(20) from equations (13) to (16). The second order terms

are neglected with respect to first order terms and the terms

u'i_ j -u_j are also neglected. The continuity and mo-

mentum equations for the large-scale structures are:

1 1_
P't + gtz + - (/,_),. + -we, = 0 (21)

7" F

7" r

+ - (_F,,,' + _ W) = a,_' O')
7, ¢, -"

1
_, + (pV_,' + _t_)_ + - [/`(/+ _ v_,' + _ w)],

1
+ - (_F_.' + _iC)o - a_(pW_,.'+ _,W)

F F

- _p'+ _ _x_,' (_.'+ '_," (23t

1
_r.,+ (p_T_,'+ _.F)_ + - [/`(p_W_.'+ _ i=)],

• /`

1 1
+ - (p'+-_W_,'+_W)o+- (_rr_,' + _.v)

l' 7"

17 1 ]=_ee --/,=J (24)

Kinetic energy equations

Mean flow kinetic energy equation

The mean flow kinetic energy equation is obtained by

first multiplying the x-momentum equation (18) by U, the
r-momentum equation (119) by I", and the o-momentum

equation (20) by IlL Then, the resulting equations are

added together. This combined equation is composed of
several main terms including the stress terms, the pressure

terms, and the viscosity terms. Using the mean flow con-

tinuity equation and defining the mean flow kinetic energy

as A" = (U" + I _" + IV')/2, the combined equation is re-

arranged to obtain the kinetic energy equation for the mean
flow

0-7 _TK+_,_ +,u'_V+_'_,_I+U

1 0 [r(_-fflf+c'_U+v'_I"+t,'_'II"+,'P)]

+ 7"_OO _ I--_lx" + u,'u U + re'{; I" + tc't_' II" + II"P

-( ,-P _;,.+-(rV),+ Wo
/`

- Uxz,'a - Vxu'_ - IVxu'_ - U,,t,'a

1

ln_ ,_- -*U'o_e÷ -
7" I" /`

_[ -2 -_ _- _= R-_ .hK-(Uix) -(Ui_)----(U{o)"
/`-

__ __ ]

(r + 2We) - II4 (W - 2to) (25)
/.2 /`2

where (gi_:) 2 = (Lv.) z + (V_:)'-' + (]T:_) 2 and similarly for

(g_,.)2 and (_-vio)2.

Large-scale kinetic energy equation

The large-scale energy equation is obtained by multiply-
ing the x-momentum equation (22) by u', the/`-momentum
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equation(23)by c', and the o-momentum equation (24)

by w'. Again, the resulting equations are added together

and the time-average is applied. This equation reqtfires

extensive manipulation to obtain its final form. The large-

scale continuity equation (21) and equation (8) are used to
combine terms. Defining the large-scale coherent structure

! ,, fo ?o
kinetic energy as Q = (t_ - + c " + w ")/'2 and noting that

the mean flow is steady, the resulting energy equation for

the large-scale structures is

O t _) 1 0(_: 0) + 7b-7(,7_ _ O) + (_uQ)7_

+ _l'p'_, + t p,. + -- + u'_ Ux + u'{U_
F

+ --Uo + _'Ju 1"_. + v'_ i',. + --I" o + w'_H'x
F F

w'(;'-- _'"wF v"_'W+ w'_ll',. + II" o + +
1" F T"

I (u' )o
1 AQ , . ., o , i_,"= -- - (u,._.)- - (26)Re

=_(v' + 2w_) - w'r- _" (_"

INTEGRAL FORM OF THE ENERGY EQUATION

For the round jet, the mean quantities are assumed to

be axisymmetric. Thus, lI" = 0 and 0( )/0o = 0. The

energy equations (25) and (26) for the mean flow and for

the large-scale structures, respectively, become:

'0 @_l(+u_L 7+u'_zV +UP)Ox

lO[( )]

- U_.u'?i - _'.,.u'_- U,.v'fi- I',.v'_- 1--Vw'Y'
1"

_K- (_,_) _ (u, ) v_
=R-_ - -77

(27)

1 0 . w_____(_cQ) + 7_(_ Q) + _'p" + v'p_.+ ,-P°

+ u'_ U_ + u'_ U,. + v'_ I'x + v'_ I',. + u"ff'V
T

' ! '9

1 A-Q ' " ' " (u_°)".... (ui,.)- (28)Re (ui_')" r 2

'//-d ]
' + 2_,_) - _ (w, - 2v;)

The usual boundary layer-type approximations are ap-

plied to the mean quantities. The radial velocity is

much less than the axial velocity, V << U, and the
axial gradients are much less than the radial gradients,

O( )/Ox << O( )/Or. Second order terms are also ne-

glected with respect to first-order terms. Thus. the mean

flow energy equation reduces to:

a.,-- 7_ _

-( ) --P V,+-(,-V) -V,_,'_ _29)
], r

Multiplying equation (29) by r and integrating over r, we

get:

- P Uxrdr - P (/[=),, dr

L L- U,.v'_rdr - 1 (_,.)2rd r
Re

since:

r_ _ = 0 and r = 0

,":O r r=O

The mean flow pressure is assumed to be constant across

the jet. The integral form of the mean energy equation re-

duces to the following simple form.

/o / Z"d _ 1 -/-va '_ 1 (U,.)2rd r

(30)

Similarly, the energy equation for the coherent compo-
nent reduces to:

o 10(puQ) + 7_(,.p_'Q)

IL,/ I

+ u'p' + , ,+ Pov p,. -- + u"_ U,,
7"

1 [_%Q , _ , ,, (u',o)2
: -L -(_)--(_')Re r 2

_U! L/.,t "]r2 (v' + 2w;) - --(w' - 2v;) (31)F2

Multiplying (31 ) by r and integrating over r, we get:

d /oc (-_u Q),.a_ :

NASA/TM--2002-211585 4



• 7)- u'p'_, + v'l/,, + -- rdr - u'-_ U,,rdr

! :1

1 fx ' ° ' 2 (ui°)-- R---$ (uL')" + (ui'') + r---Z---_

U! 11!! 1 ]

+-_(_,',._+ 2_c') + _/_... - 2,.'otj ,.d,.

(32)

since

r = 0 and r = 0.
r':O 1' r'=()

The physical interpretation of the terms appearing in the

energy equations is obvious. For the mean flow equation,
the left side is the mean flow advection of the mean flow

kinetic energy. The first term on the right-hand side of (30)

is the energy transfer from the mean flow to the coherent

structure, and the second term is the viscous dissipation of

the mean flow energy. As for the coherent mode equation
(32): the left-hand side is the mean flow advection of the

coherent mode kinetic energy, The first term in the right-

hand side is the work done by the coherent mode pressure
gradients, the second term is the energy transfer from the
mean flow to the coherent mode. and the last term is the

coherent mode energy dissipation.

SHAPE ASSUMPTIONS

To solve the above system of two energy equations,

shape assumptions need to be made regarding the radial
profiles. The mean flow is assumed to be a known function

of r and O, where 0 is the momentum thickness of the jet

shear layer, and the coherent structure profiles are assumed

to follow that of the locally-parallel, linear stability theory.

Single azimuthal modes

Considering single-frequency, single-azimuthal number

modes, the normal mode composition suggests that these
modes can be represented as:

ul(x , r, o, t) = 7Ji(r)A(x) exp (_ + in0) + cc (33)

p'(.r, r, o, t) =/5(r)A(.r) exp (_ + ino) + cc (34)

p'(:c, r, O, t) = t3(r)A(:c) exp (_ + irzO) + ec (35)

= i a d)_ - iwt

where ( _ ) denotes the radial shape function of the trans-

verse coordinate r at a given location along the jet. fzi(r ),

i5(r), and/5(r) are eigenfunctions corresponding to a given
n and w. Here, n is the azimuthal wave number indicating

the rotation around the jet centerline, ct is the wave number

and cc denotes the complex conjugate. A(x) is the complex

amplitude function of x and is to be determined by a non-

linear analysis. In the nonlinear analysis, the linear growth

rate as determined by the imaginary part of o is absorbed

into A(x). The radial shape functions are normalized such
that

_ (l_? + I_'? + !_'1°-),'dr'= 1

Substituting the mode definitions into equation (30) and

extending the definition of the averaging process to include
the azinmthal direction,

T-_ _ ) dt do.

where T is a large time scale, we obtain

dO dlo,,, p 1 I
dz dO - JA-(I,_,_.: + I,,,_,,0) - Ree ,,,d (36)

where

I .... = __ _ U :_rdr

Imwl -= (O[t* + ec)_-_srr dr"

I,nw2 = ( f'y + cc)U-_sr r d_"

lind = \ Or J

In this analysis, the mean flow is characterized by the mo-
mentum thickness rather than by the axial distance. Hence,

the integrals in the energy equations are dependent on 0
instead of x.

Upon substitution into equation (32), we obtain for the
coherent mode:

d (_,o_,i..tl2)
day

where

1 I
-[,4[2(-[mwl-I,,,,a-Ip-_e _,d)

(37)

fo 9_t
Io.. = (V,12+ l_'? + l¢'12)-_rd_

fo _ --OUlmw a = ( ftfi* + cc ) I,'-_r r dr

Or + + cc

/:[(I_,_ = 2 iol2 + ,-_/ (!_j_o+ i_,1_+ )_,?.)

] o
+=_. (l{,/-°+ la,_?) - _(_n_:,_,* + ee)

+ _r + Or + r dr
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Pair of oblique waves

Experimental observations have indicated that the helical

modes appear in the form of a symmetrical pair with _, the
mode number, set to both 5=1.s In this case, the normal

mode definitions are modified as follows:

u'(x. 7".o. t) = fi(r)A(x) exp (_) cos(no) + ce (38)

c'(.r.r.o, t) = ?'(r)A(x) exp (_) cos(l_o) + cc (39)

w'(x, r. o. t) = ff'(r)A(x) exp (_) sin(no) + cc (40)

l/(x. r. o. t) =/)(r)A(x) exp (_) cos0_o ) + cc 141)

p'(x. r. o. t) =/5(r)A(x) e'<p (*) cos(no) + cc (42)

When these definitions ,are substituted into the integral

equations (30) and (32) and the averaging process is ap-

plied, we obtain the following sets of equations.

dO dI ...... 1 I
dx dO -!A[-(I,.¢,1 + I,.__)- Ree ,.d (43)

where

where

ft) _'c ^ _2 --'F;"
1 (!_r2 + lf,]2 + [u,i )p[,.dr

f1 _ ee)F_r= 71,, + dr

Ip 7_ hun/3)* + i 'Off_= - -- + cc r dr
- Or r

I ,d = io[2 + . + 2+/a,t 2)

1 2n
(If'? + + +

IN + t°f'N+ +_r rdr

The radial shape functions are normalized such that

/0 fuJ" nt- I_2'[2 4- it_,l2) rdr =' #l >0

For the incompressible case, the above equations reduce to
that of Lee & Liu.t°

Mean flow

In previous studies using the energy integral technique,

the shape assumption for the mean flow was provided by

analytic equations describing the velocity and density pro-
files, j'3'l° This works reasonably well in the initial po-

tential core region of the jet where the shear layer is well
described by a hyperbolic tangent or other functions and

the locally-parallel flow instability wave is predominantly

growing. In order to describe the full axial development

of growth and decay of the instability wave, the mean

flow must not only be described through the potential core

region, but also possibly downstream into the fully devel-

oped flow region. An analytic function description of the

mean flow would not be smoothly continuous throughout

this domain. Furthermore, an analytic function description

of the mean axial velocity (e. g. hyperbolic tangent) com-

bined with the Crocco-Busemann description of the density

profile provides a nonphysical radial velocity profile. A

proper physical description for the radial velocity profile

is required for computing integral Im,,,a. These objections
are overcome by determining the mean flow numerically.

We compute the mean flow using the procedure of Dahl &

Morris _j with the addition that the radial velocity profile is

computed from the mean continuity equation (17). Thus,

the numerical calculations provide the mean flow profile

shapes that smoothly transition from the initial region to

the fully developed region and that can be parameterized
by 0 as required by the analysis.

The computational scheme for the mean flow of a jet was
developed using a set of compressible, Reynolds-averaged,

boundary layer equations with a modified mixing length

model to determine the Reynolds stresses. In nondimen-

sional form, the Reynolds stresses were computed by

_-_ulv, = pT OU (45)
-fijU--jD Or

where p'r is a turbulent viscosity and is a function of r and

x. Here, the unsteady terms represent all scales of turbu-

lence. If the fluid viscosity is given by p, then in the shear
layer PT >> P.

Linear stability

The coherent structure profiles are determined from a

locally-parallel, linear stability theory. Given the known

complications that arise when using inviscid theory to com-

pute eigenvalues and eigenfunctions of the damped por-

tions of the instability wave, a compressible, viscous ap-

proach was used for the stability calculations following
the work of Morris. L_'13 The compressible equations of

motion are linearized about a locally-parallel flow and the

compressible parts of the viscous terms in the momentum

equations are neglected. In the energy equation, both vis-

cosity and diffusion effects are neglected. After applying

the modal decomposition for single azimuthal modes, the

NASAfI'M_2002-211585 6



governinglinearizedequationsbecome

O?---_+ -7"+ r +iob - _31j(_,- oP)k = 0

02 _' 1 Og,
-- -I- ---- I

Or _" r Or

02(b 1 0£

07`2 7" Or

02_ 1 Off

ar e 7"07"

(46)

A-+ +____21 ,-72 = 0

n e + 1 ] i2n inReA2 + --Tg--j t;,+ -_-"_'r- r p = 0

'(-'1 -at'-_"k e + 7"2 j _ - p_7-r v - mire/5 = 0

where A2 = a 2 - i_Re(.,' - oF). For a pair of oblique

waves, the linearized equations are the same except the _g,

is replaced by -iff, in equations (46),
Using the boundary conditions given by' Morris, t3 we

obtain an eigenvalue problem for a. We used a finite-

difference approximation to discretize the system of equa-

tions (46). The eigem,alue was found from diagonalizing

the resulting matrix using a Newton iteration for refine-

ment. The four eigenfunctions in these equations were then

found using the im,erse power method and normalizations

given previously. The density disturbance eigenfunction

was obtained from the continuity equation.

-;_, _ -_ +_-- I + p_ [_p (47)h (.,-7_t:) a,.

The eigenvalue depends not only on the flow profiles,

but it also depends on the parameters n, +1I),_,, and Re.
The mode number, the Mach number, and the frequency

are easily chosen parameters of interest. The choice of

Reynolds number is not as certain. Morris 13 has shown

how the eigenvalue can depend on the choice of Re. In cal-

culations of viscous stability, setting Re to a constant has
been typical.14 We propose here that since the eigenvalues

are computed based on local flow conditions thai a local

Reynolds number be used, also. Using the numerical mean
flow calculations, we determine a local Re from

Re = _jUjD (48)
(_/T)maa"

based on equation (45). This represents the maximum ef-
fect that turbulent viscosity has on the large structures,

Though this approach to local stability includes viscous
effects, it is found to have the same limitations as linear,

inviscid theory, js The analytically continuous eigenvalue

solution for a damped, supersonically traveling mode has

corresponding eigenfunctions that diverge for large r rather

than converging as required to compute the integrals Ip and
[wd. This limits the Mach number for the application of this

integral technique.

NUMERICAL RESULTS

Mean flow

The calculations were performed for seven jets with exit

Mach numbers ranging from 0.3 to 2.1 in increments of

X

i i

1 2 3 4

Fig. 1 Jet mean flow profiles computed at 8 axial locations.

Mj = 1.8; To = T:_.

0.3. In all cases, the jets were cold with the jet exit to-

tal temperature equal to the ambient temperature. As the
flow becomes supersonic, the jets were perfectly expanded.

An example of the computed jet profiles is shown in Fig-

ure l for a Mach 1.8 cold jet. The mean flow profiles have

smooth gradients in the radial direction and smoothly tran-

sition from the potential core region to the fully developed

region downstream. The radial velocity exhibits physically
realistic behavior. The flow is outward, a positive velocity,

toward the shear layer from the high speed potential core
and inward, a negative velocity, outside of the jet indicat-

ing entrainment of the outer fluid. These flow calculations

meet the requirements indicated for the stability calcula-
tions.

The mean flow calculations also provide the local mo-

mentum thickness and the local Reynolds number required

for the stability and the energy integral calculations. The

momentum thickness, 0, is computed based on only the ve-

locity profile and the local Reynolds number is computed
from equation (48) during the mean flow computations as

part of the turbulence model. The results for the seven

jets is shown in Figure 2. The jet spreading rate decreases
with Mach number, as expected, with the momentum thick-

ness remaining about the same, 0 _ 0.22, at the end of

the potential core as indicated for the 31j = 0.3 and the

Mj = 1.8 jet cases. The local Reynolds number decreases
rapidly through the potential core from its initial value at

the jet exit.

Local stability

Using the mean flow as input, the local stability char-

acteristics were computed for each jet. The eigenvalue or

local wave number was determined from equations (46)

where the pair of oblique waves form was used in the com-

putations. Results are shown in Figure 3 for each jet where

NASA/TM--2002-211585 7
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Fig. 2 Axial variation of local momentum thickness, 0, and
local Reynolds number, Eq. (48), computed for 7 jet Mach
numbers.

the Strouhai number was set to 02 and the azimuthal mode

number was _ = +l.. The local wave number, c_, is com-

plex consisting of a real part, Qr, that governs the axial

phase change of the instability wave and an imaginary part,
c_i, that relates to the local growth or decay of the wave. In

this figure, a negative oi represents a growing mode and a

positive value represents a decaying mode. We can see that

the growth rate decreases with an increase in Mach number.

This is expected: but, the decrease in growth rate is also a
function of the local decrease in Reynolds number. 13

The local phase velocity is computed from _.,/c_.. In Fig-

ure 3, it is shown relative to the ambient speed of sound.

The relative phase velocity increases directly as the Mach

number increases. It is an indication of the ability of the

instability wave to directly radiate noise as the phase ve-

locity becomes supersonic relative to the ambient speed of

sound. Low speed jets do not radiate sound from this type

of source• As the jet speed increases, the higher phase ve-
locity combined with the growth and decay behavior of the

instability wave contribute to the ability of these waves to
radiate noise.15

Local energy integrals

The four integral terms in equation (43) govern the ad-
vection, transfer, and dissipation of the mean kinetic en-

ergy. The results of the computations of these integrals for

the seven jets are shown in Figure 4. As a function of 0, the

advection of the mean flow kinetic energy, as represented

by the integral 1,m, is essentially the same for these jets.

This indicates that the integral is related to the jet spreading

rate. The rate of change of 1o,,_ is initially constant and then

gradually decreases. The energy moves downstream as the

jet spreads and then downstream of the potential core. the
advection slows.

The next two integrals, Ir,,,,,a and Imw2, represent the

transfer of energy from the mean flow to the coherent struc-

tures. The integral 1,_,_ has the classical form for the ve-

locity shear driven generation of the large-scale structures.

4.0 _ .... -

3.0

2.5

2,0

1.5 _-
1.0 I. L

,- -- - M'=15 1

0.6
0.4
0.2
0.0

-0.2
-0.4
-0.6
-0,8
-1.0

1,2_

1.0_

0,8

0.6

0.4

0.2_-_ ----
0,0 _ ' ' , _

0,0 0,1 0,2 0,3 0,4 0.5 0.6

8

Fig. 3 Local wave number c_ = _ + i_l and phase veloc-

ity, Cpb = _'/_, as a function of jet momentum thickness.

n = ±1; fD/Uj : 0.2.

It is negative indicating energy transfer from the mean flow

to the modes. Its magnitude is larger for low speed jets and

decreases in magnitude as the Mach number increases be-

coming a less efficient energy transfer process. However,

this view has to be balanced by the presence of 1,,,.2. This

second integral is present due to compressibility effects. At
low speed, the magnitude of I,,_w2 is negligible. Its effect

steadily increases as the Mach number increases until at

3Ij = 2.1. for example, Im_,,a and Imu,2 have similar mag-
nitude. Part of the reason for the increased magnitude of

I,,_.o can be seen by explicitly substituting for ¢5in the in-

tegral using equation (47). The shear of the density profile

is a dominant factor in determining the magnitude of I,,,_,,2.

As the Mach number increased, the jet density increased

relative to ambient conditions increasing the density shear
rate.

One computational difficulty created with the current

viscous stability method is the presence of the pole in t5

as the imaginary part of a passes from negative to posi-

tive (Eq. (47)). This must be accounted for in the integrals

containing 15along with the subsequent branch cut associ-
ated with damped modes. The discontinuities present in the

plots of Im_,z are clear evidence of the problem.

The final integral, Imd, concerns viscous dissipation of

the mean kinetic energy. In combination with the local

Reynolds number, it is initially two orders of magnitude

less than the other integrals and only becomes effective

when the energy transfer integrals approach zero. The dis-
sipation is about constant in the potential core region and

then decreases downstream. There is more dissipation for

lower speed jets than for the higher speed jets.

The next set of integrals, shown in Figure 5, govern the

NASA/TM--2002-211585 8
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Fig. 5 Energy integrals from the coherent structure energy

equation (44). n = ::El; fD/Uj = 0.2.

kinetic energy in the coherent modes; in this case, a pair

of oblique modes. The energy comes from the mean flow

through I,,wl which now is positive. As it decreases in

magnitude, the work done by the coherent mode pressure

gradients, Ip, and the dissipation term begin to reduce the

energy in the coherent mode. Soon, the dissipation quickly

dominates to rapidly decrease the mode energy. The effect

of the compressibility integral I_u,3 has some initial effects

of adding energy to the coherent modes, but it quickly has

negligible effects on further energy transfers.

Nonlinear calculations

Once the energy integrals were computed, the instability

wave amplitude function was determined from the solu-

<__

10 -_

Fig. 6 Amplitude function magnitude comparisons between

nonlinear and linear calculations, n = +1; f'D/Uj = 0.2;
IAol 2 = 10 -3.

0"6 1_ Nonlinear Amp. Eq, 8_' ' MJ "_0_6..._- .,., 1_

0.2

0.0 _ ' _ ' _ ' ' a ....
0 5 10 15 20 25

x

Fig. 7 Shear layer growth comparisons for nonlinear calcu-
lations, n = ±1; fD/Uj = 0.2; IAol 2 = lO -a.

tion of the nonlinear differential equations (43) and (44).

An initial value differential equation solver implementing

a degree-1 Taylor series scheme with fixed point iteration

was used. l_ The energy integral results were interpolated

as necessary to meet the requirements of the scheme. Only

the choice of the initial amplitude was needed to start the

integration at x = 0, where 0 was given by the flow calcu-
lations.

The results for the computed amplitude function mag-

nitudes for the seven jets are shown in Figure 6. The

Strouhal number was set to 0.2, the mode number was

= =i=l, and the initial amplitude IAo[ 2 was 10 -3. The

solid lines represent the nonlinear development of the am-

plitude function. The dashed lines are the correspond-

ing linear instability wave amplitude functions determined

from [Aol exp(- fo _ dk). It can be seen that in this case

the nonlinear amplitude reaches a peak and begins to de-

cay much sooner than the linear amplitude. This effect

becomes more pronounced as the Mach number increases.

At this level of initial amplitude, the mode energy causes

increased jet spreading that is more pronounced as Mach

NASA/TM--2002-211585 9



10 o

10

---- Nonlinear Amp. Eq. I

//

/

-- ii
10 3

104 _

}

10 -s i .........

0 5

\ '\

,, \

'\,\,\,

", ", I_ 3 = 0

10 15

X

2O

" i\

\ ,

I
J

.... t

25

Fig. 8 Amplitude function magnitude comparison with and
without the coherent structure compressibility effects integral
Imwa. lk{j = 1.8: n = ml; fD/U"-j = 0.2; iAo[ a = 10 -3.

number increases as shown in Figure 7 for three example

jet Mach numbers. The increased jet spreading conversely

lessens energy transfer into the mode leading to earlier

saturation and decay for higher Mach number nonlinear

amplitudes compared to linear amplitudes.

It is interesting to notice that the initial small nonlinear
amplitude does not coincide with the linear amplitude. In-

tuitively, the expectation would be that nonlinear behavior

would begin to take affect after a period of linear growth.

An examination of the energy exchange integrals is re-

vealing. As mentioned earlier, the integral 1,m,.3 has the

effect of initially adding mean flow energy into the coher-

ent modes. It contains terms with the radial mean velocity,

", and the mean density shear, O_/Or, which means that

[,,,u.._ would not appear in a parallel, incompressible flow
analysis of this type. For the computed results presented

here, shown in Figure 5, 1,,u,:3 causes the amplitude to

grow faster immediately and not follow the linear growth.

To confirm this notion, the calculation used for Figure 6

was repeated for the 31j = 1.S jet setting lmu.3 : O.
The results are shown in Figure 8. Obviously, without

the additional energy input into the coherent modes from

non-parallel flow and compressibility effects, the nonlinear
amplitude function does initially follow the linear growth
before nonlinear effects take over.

The initial amplitude used in the nonlinear calculations

also affects the results. This is shown in Figure 9 for the

3Ij = 1.8 jet where the amplitude is normalized by its ini-
tial value. The initial amplitude ranges from iAo! 2 : 10 -6

to 10 -2 . The normalized linear amplitude line is the same

for all initial amplitudes. Hence, only one line is necessary

for comparison. The nonlinear amplitude peaks and be-

gins to decay sooner as the initial amplitude increases. The

104

\

103 f _

102

_<- 10'

t IAol_= 10 10a

10 -_ .... _ , . ,
0 5

_-, _ Linear

10-' 10 = 10 -°

10 15 20

X

l

• 25

Fig. 9 Amplitude function magnitude comparisons with dif-
ferent initial amplitudes. ]VIj = 1.8; n = 5=1; fD/Uj = 0.2.
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0.0
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• ./.- .---_ _..__._-_--_ lo _ J

5 10 15 20 25

X

Fig. 1O Shear layer growth comparisons with different initial
amplitudes. NIj = 1.8; n = --_1; fO/Uj = 0.2.

stronger initial amplitude leads to the initial increased jet

spreading (Figure 10) that results in less total energy being
transferred into the mode from the mean flow. The end re-

sult is quicker saturation and decay of the mode amplitude.
This effect was also noted for the two-dimensional, com-

pressible shear layer. -s The weaker initial amplitudes result

in delayed spreading, allowing more energy to transfer into

the mode even to the point that the amplitude grows larger

than the linear amplitude. These results point to an issue

that occurs when comparing computed results to measured

data. In linear calculations, the unknown initial amplitude

is used as a parameter to match data with computations.

With nonlinear calculations, every different initial ampli-

tude changes the peak location and shape of the amplitude
function. To illustrate, Figure 11 shows qualitative com-

parisons of both nonlinear and linear amplitude functions

to measured dataJ 7 The data is from a Mach 1.8 cold jet
and the Strouhal number is 0.25. The measurements in-

clude a spatial integration and include the presence of all
mode numbers. The calculations are for mode n = :t:1;

hence, the comparison is inexact.

NASA/TM--2002-211585 10
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CONCLUDING REMARKS

In this method, the large-scale structure is approximated

by a single-frequency, instability wave of a given azimuthal

mode number. The fact that the large-structures have a

spectrum of frequencies and multiple azimuthal modes has

been ignored. Furthermore, the interactions among these

modes and with the background, fine-scale turbulence have

been neglected. In addition, non-parallel flow effects are
not fully taken into account.

Despite these approximations, the results are clearly en-

couraging indicating qualitative agreements with experi-
ment. The modes initially grow linearly and then satu-
rate as a result of the nonlinear interactions and the flow-

divergence effects. Interestingly, the results indicate that

the initial growth of the modes becomes larger compared

to that of the linear, parallel-flow case due to non-parallel

flow and compressibility effects. The results also indi-
cate that the initial level of the disturbance influences the

development of the coherent structure and hence the radi-

ated noise field, As such, experimental data on jet noise
measurements need to be related to the initial level of the
disturbances.
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